Performance Challenges for Simulation of Turbulent Flows in Complex Geometries

Danesh Tafti dtafti@vt.edu (540)231-9975

Large-Eddy Simulations (LES)

- Solve unsteady Navier-Stokes and energy equation by resolving all scales of turbulence up to the inertial range on the computational mesh ($N \propto Re^2$)
 - turbulent length and time scales now decided explicitly by the mesh ~ dx.
 - Scales smaller then dx are not included and have to be modeled - subgrid stress modeling
 - Captures relevant turbulent physics with good fidelity but compute intensive
 - Also data intensive

Alliance Funding

- Development and deployment of GenIDLEST
- General Incompressible Direct and Large-Eddy Simulations of Turbulence
 - Boundary conforming transformations
 - Multi-block structured grid
 - Unstructured block topology
 - x-direction boundary can interface with h- or z-direction boundary with arbitrary axes orientations
 - Non-matching block interfaces
 - Allows zonal embedding and flexibility in meshing complex geometries
 - Distributed/shared memory parallel computing technology

Current Applications

- Air-side heat transfer enhancement in compact heat exchangers
- Turbomachinery internal/film cooling and combustors
- Process Equipment
- Microflows: lab-on-a-chip applications

Other Users:

Shell Oil

Virginia Active Combustion Control Group (VACCG)

Compact Heat Exchangers - Industry

Internal Turbine Blade Cooling – DOE/industry

- Flow is unsteady and turbulent, Re ~ 20 - 50,000.
 - square, rectangular or trapezoidal channels
 - augmentation through ribs roughness elements

Flow Induced Vibrations in a Flasher Unit – Shell Oil

Dependent Technologies

- Single processor performance solution of linear systems and sparse-matrix vector operations
- Parallel computing paradigms (MPI, OpenMP)
- Parallel I/O, data (MPI-IO/HDF5)
- Distributed visualization and analysis (VisBench)
- GRID technologies: Globus, COG, PSE's.....

GenIDLEST - Parallel Implementation

• Hierarchy of parallelism can be exploited

Global System matrix

Generated in semi-implicit treatment and pressure

equation. 80-90% of computational

work in complex geometries.

Sparse

2D system matrix,

Non-periodic b.c.s

Periodic b.c.s

- sparsity pattern depends on B.C.s.
- Mostly non-symmetric-18 off-diagonal elements in 3-D
- Use CG for SPD systems, and BiCGSTAB, GMRES(m) for nonsymmetric.
- Preconditioners: Additive Schwarz Richardson or SSOR iterations applied to cache blocks.

Cross-Platform

Rick Kufrin, NCSA Performance Engineering

Itanium performance

Rick Kufrin, NCSA Performance Engineering

Linear Solver Performance

Performance Challenges

- Better Cache utilization
 - Sparse matrix vector multiplies
 - Linear solvers
- Load Balancing
 - Block sizes, physics, processors static.
- General portable implementation of Fast Solvers based on 2-D and 3-D FFTs and linear solves for homogeneous problems.